Differential Equations for Sine-Gordon Correlation Functions at the Free Fermion Point

نویسندگان

  • Denis Bernard
  • André LeClair
چکیده

We demonstrate that for the sine-Gordon theory at the free fermion point, the 2point correlation functions of the fields exp(iαΦ) for 0 < α < 1 can be parameterized in terms of a solution to a sinh-Gordon-like equation. This result is derived by summing over intermediate multiparticle states and using the form factors to express this as a Fredholm determinant. The proof of the differential equations relies on a Z 2 graded multiplication law satisfied by the integral operators of the Fredholm determinant. Using this methodology, we give a new proof of the differential equations which govern the spin and disorder field correlators in the Ising model. 2/97

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Errata for: Differential Equations for Sine-Gordon Correlation Functions at the Free Fermion Point

We present some important corrections to our work which appeared in Nucl. Phys. B426 (1994) 534. Our previous results for the correlation functions e iαΦ(x) e iα ′ Φ(0) were only valid for α = α ′ , due to the fact that we didn't find the most general solution to the differential equations we derived. Here we present the solution corresponding to α = α ′. 1 Member of CNRS 2 Laboratoire de la Di...

متن کامل

Massless Boundary Sine-Gordon at the Free Fermion Point: Correlation and Partition Functions with Applications to Quantum Wires

In this report we compute the boundary states (including the boundary entropy) for the boundary sine-Gordon theory. From the boundary states, we derive both correlation and partition functions. Through the partition function, we show that boundary sineGordon maps onto a doubled boundary Ising model. With the current-current correlators, we calculate for finite system size the ac-conductance of ...

متن کامل

Fractional-Spin Integrals of Motion for the Boundary Sine-Gordon Model at the Free Fermion Point

We construct integrals of motion (IM) for the sine-Gordon model with boundary at the free Fermion point (β2 = 4π) which correctly determine the boundary S matrix. The algebra of these IM (“boundary quantum group” at q = 1) is a one-parameter family of infinite-dimensional subalgebras of twisted ŝl(2). We also propose the structure of the fractional-spin IM away from the free Fermion point (β2 6...

متن کامل

Notes about equivalence between the Sine-Gordon theory (free fermion point) and the free fermion theory.

Notes about equivalence between the Sine-Gordon theory (free fermion point) and the free fermion theory. Abstract. The space of local integrals of motion for the Sine-Gordon theory (the free fermion point) and the theory of free fermions in the light cone coordinates is investigated. Some important differences between the spaces of local integrals of motion of these theories are obtaned. The eq...

متن کامل

Boundary Sine-Gordon Interactions at the Free Fermion Point

We study bosonization of the sine-Gordon theory in the presence of boundary interactions at the free fermion point. In this way we obtain the boundary S-matrix as a function of physical parameters in the boundary sine-Gordon Lagrangian. The boundary S-matrix can be matched onto the solution of Ghoshal and Zamolodchikov, thereby relating the formal parameters in the latter solution to the physic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997